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Abstract This paper aims to study stability and sensitivity analysis for quasi-variational
inequalities which model traffic network equilibrium problems with elastic travel demand.
In particular, we provide a Hölder stability result under parametric perturbations.
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1 Introduction

Our aim is to deal with stability and sensitivity analysis for a class of quasi-variational inequal-
ities modeling elastic traffic equilibrium problems. We focus our attention on the continuity
of solutions subject to parametric dependence, and obtain a Hölder stability result, which can
be viewed as a first step for differentiability analysis. Although we refer to elastic traffic mod-
els (see [7,8,16] for a discussion on such models), the formulation of the quasi-variational
inequality problem we consider may encompass numerous applied problems, such as gen-
eralized Nash equilibria, multi-leader-follower games, superconductivity, thermoplasticity,
and electrostatic with implicit ionization threshold.

Continuity of solutions has a central position; in fact it arises in different fields, such
as in spacial market equilibrium, Nash equilibria, oligopolistic equilibrium models, traffic
equilibrium problems, and optimal control. Common practical applications include energy
planing, urban transit system analysis and design, and prediction of intercity freight flows.

Sensitivity analysis was pioneered in the context of nonlinear programming in the seminal
work by Fiacco and McCormick [9] and later enlarged in [10,11,17]. In a parallel fashion,
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sensitivity analysis was applied for variational inequalities, reaching a very high level,
especially after the works of Robinson [14,15] on generalized equations, which have allowed
a new and unified perspective for both variational inequalities and nonlinear programming.

Thus, prompted by the large number of applications, numerous mathematicians investi-
gated many aspects of sensitivity and stability analysis for variational inequalities, optimiza-
tion problems and inequality systems. For a survey of this theory, we refer, among the others,
to [1–3,12,13,18,22].

However, to the best of our knowledge, the continuity of the solution map for quasi-
variational inequalities has not been thoroughly studied, and only few efforts have been
devoted to this topic. In particular, the Hölder or Lipschitz continuity for this class of prob-
lems is still missing as confirmed by the results in the literature. Moreover, the stability issue
in transportation problems still remains a challenging question. User equilibrium always
depends on some parameters, the most common of which are monetary cost (including tolls
and fuel consumption), distance, rate of accidents, and general travel comfort. These circum-
stances naturally influence the preference options of traffic users, who then need a monitoring
of their decision-making process. In many situations, some of the factors involved in trans-
portation networks may be regarded as perturbing parameters rather than real criteria. For
this reasons, we were motivated to cope with Hölder stability issues in the framework of
traffic equilibrium problems expressed in terms of quasi-variational inequalities.

We now outline the remainder of the paper. Section 2 is devoted to the detailed description
of the traffic network model. In Sect. 3, a Hölder continuity property of data as functions of
the parameters is given, and, finally, in Sect. 4 the main result is discussed.

2 The traffic equilibrium model

The foundation of the study of traffic network problems goes back to Wardrop [21], who
stated the basic equilibrium principle in 1952. Over the past decades, a large number of efforts
have been devoted to the study of traffic assignment models, with emphasis on efficiency,
and optimality, in order to improve practicability, reduce gas emissions, and contribute to
the welfare of the community. The variational inequality approach to such problems begins
with the seminal work of Smith [19], who proved that the user-optimized equilibrium can be
expressed in terms of a variational inequality. Thus, the possibility of exploiting the powerful
tools of variational analysis has led to deal with a large variety of models, reaching valuable
theoretical results and providing applications in practical situations. In this paper, we are
concerned with a class of equilibrium problems which can be studied in the framework of
quasi-variational inequalities, see [7,8]. In particular, we focus on models with elastic travel
demands, in the sense that they depend on the equilibrium distribution.

Let us consider the graph of a network G = [N , L], where N is the set of nodes (e.g.,
crossroads, airports, railway stations) and L is the set of directed links (stretches of streets).
Let a denote a link of the network connecting a pair of nodes and let p be a path consisting of
a sequence of links which connect an Origin–Destination (O/D) pair of nodes. We suppose
that in the network there are n links and m paths. Let W be the set of O/D pairs with typical
O/D pair w; we also suppose that the number of elements of W is l, with m > l. The set of
paths connecting the O/D pair w is denoted by Pw and the set of all the paths in the network
by P . Let fa denote the traffic flow on link a and vp the non-negative traffic flow on path
p. Let f = ( f1, . . . , fn)

T be the link flow vector and v = (v1, . . . , vm)
T the path flow

vector. The relationship between the links and the path flows is given by fa = ∑
p∈P δapvp

or f = �v, where� = (δap)a∈L ,p∈P is the link-path incidence matrix, whose typical entry
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δap is 1 if link a is contained in path p and 0 otherwise. The above condition shows that the
flow on a particular link is given by the sum of the flows on the paths which contain that link.
We assume that the travel demand associated with the users traveling between O/D pairs is
not fixed, but depends on the equilibrium distribution denoted by u. In fact, it is clear that
travel demands are affected by users’ prediction of the flow amount through the network. Let
E be a nonempty, compact, and convex subset of R

m+ and let d: E → R
l+ the travel demand.

The set of feasible flows is the set-valued map K : E → 2R
m+ :

K (u) = {v ∈ E : Av = d(u)},
where A = (φwp)w∈W,p∈P is the link-route incidence matrix O/D pairs-paths whose typical
entry φwp is 1 if path p connects the pair w and 0 otherwise. The meaning of the conserva-
tion condition Av = d(u) is that flows and hence travelers are not lost or generated in the
network. Let ca( f ) denote the user travel cost associated with the link a and group the link
costs into the vector c( f ) = (c1( f ), . . . , cn( f ))T . Only the case of asymmetric cost, i.e.,
the cost on a link does not depend only on the flow on that link, but it is affected by the flows
on all the links in the network, will be taken into consideration. Let C p(v) denote the user
travel cost on path p and let C(v) = (C1(v), . . . ,Cm(v))

T be the path flow vector. It results:
C p(v) = ∑

a∈L δapca( f ) or C(v) = �T c( f ) = �T c(�v). The above relationship shows
that the cost on a path is given by the sum of the costs on links which form the path.

Now we provide the definition of equilibrium distribution, extending the well-known
user equilibrium flow as introduced in Wardrop [21], and its equivalent quasi-variational
inequality formulation.

Definition 1 A flow u ∈ K (u) is a user traffic equilibrium flow if ∀w ∈ W and ∀p, s ∈ Pw
it results that

C p(u) > Cs(u) �⇒ u p = 0.

Theorem 1 A flow u ∈ K (u) is an equilibrium pattern if and only if it satisfies the following
quasi-variational inequality

〈C(u), v − u〉 ≥ 0, ∀v ∈ K (u). (1)

Remark 1 It is reasonable to assume that d(u) > 0,∀u ∈ E , because, otherwise, the network
would be empty. In addition, there exists δ ∈ R

l+ such that d(u) ≤ δ, ∀u ∈ E . In fact, for
the clear physical meaning, an unlimited demand requirement would be unrealistic. Thus, it
results that flows are nontrivial and norm-bounded from below. The typical set of feasible
flows with h O/D pairs is as follows

Kd =
{
v ∈ R

m : v j ≥ 0, j = 1, . . . ,m :
∑

j∈J1

v j = d1(u), . . . ,
∑

j∈Jh

v j = dh(u)
}
,

where Ji , i = 1, . . . , h, is the set of paths j ∈ {1, . . . ,m} which connect O/D pairs wi , i =
1, . . . , h. Now we compute minv∈Kd ‖v‖. Given the Lagrangian function

L(v, ϕ, ψ) =
m∑

j=1

v2
j −

m∑

j=1

ϕ jv j − ψ1

( ∑

j∈J1

v j − d1(u)
)

− · · · − ψh

( ∑

j∈Jh

v j − dh(u)
)

the following conditions hold

2v j − ϕ j − ψi = 0, j ∈ Ji , i = 1 . . . , h,
ϕ jv j = 0, ϕ j ≥ 0, j = 1 . . . ,m,∑

j∈Ji
v j = di (u), i = 1 . . . , h.
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For a fixed j ∈ J i , i = 1 . . . , h, it follows that if v j > 0, then ϕ j = 0 and v j = ψi/2 > 0.
On the other hand, if v j = 0, then ϕ j ≥ 0 and ϕ j + ψi/2 = 0, which is an absurd asser-
tion. Thus, v j is always strictly positive. Solving the above system, we find the solution
v∗

j = di (u)
si
, j ∈ Ji , i = 1, . . . , h, where si is the number of elements of Ji . Finally, after

some calculations, we find that minv∈Kd ‖v‖2 = ‖v∗‖2 = ∑h
i=1

d2
i (u)
si

≤ ∑h
i=1

δ2
i

si
. In the

following
∑h

i=1
δ2

i
si

will be denoted by δ0.

3 The mathematical model and related assumptions

The quasi-variational inequality subject to our treatment consists in seeking u ∈ K (u) such
that

(QVI) 〈C(u), v − u〉 ≥ 0, ∀v ∈ K (u),

where K (u) = {v ∈ E : Av = d(u)}, E is a convex and compact subset of R
m+, A is an

appropriate l × m−matrix (with m > l), and d: E → R
l+ the travel demand map. Since

in our model flows are nontrivial, we assume that 0 /∈ E . Therefore, as the norm is lower
semicontinuous on E , feasible flows are bounded from below in norm, notice that in Remark
1 we computed the greatest lower bound for flows. We shall also assume that the solutions
set to (QVI) is nonempty and nontrivial. Thus, we denote by ū a solution to (QVI) belonging
to some neighborhood X ⊂ E . In order to state the parametric quasi-variational inequality,
we assume that C is subject to change, which can be seen in a general perturbation form
by involving a parameter µ, where µ belongs to a subset of a finite dimensional space �,
whose norm is denoted by ‖ · ‖. Therefore, we consider a family of cost operators C(·, µ)µ
defined from E into R

m+. The perturbation of constraints will be done with respect to the
map d , whereas matrix A will be fixed. Hence, we suppose that there exists a parameter λ,
element of a subset M of an Euclidian subspace whose norm is also denoted by ‖ · ‖, which
acts on d . For any parameters µ and λ,V(µ) and V(λ) will denote a neighborhood of µ and
λ, respectively. Moreover, the initial values of λ and µ are denoted by λ̄ and µ̄, respectively.

Therefore, for µ ∈ V(µ̄) and λ ∈ V(λ̄), the perturbed problem can be stated as follows:
Find u(µ, λ) ∈ Kλ(u(µ, λ)) such that

(QVIµ,λ) 〈C(u(µ, λ), µ), v − u(µ, λ)〉 ≥ 0, ∀v ∈ Kλ(u(µ, λ)).

The above problem can be considered as a perturbed form of the problem (QVI), so that
ū = u(µ̄, λ̄) is a solution to (QVIµ̄,λ̄). In the following, we assume that (QVIµ,λ) admits at
least a solution u(µ, λ) in K (λ) ∩ X . We are not interested in discussing existence issues,
however, we address the interested reader to [4–6] for a discussion on this topic.

Our analysis will be carried out on the basis of the following assumptions:

(h0) d is Hölder continuous, i.e., for some L1, L2 > 0 and ξ, ξ ′∈ ]0, 1[,
|dλ(u)− dλ′(v)| ≤ L1‖λ− λ′‖ξ ′ + L2|u − v|ξ , ∀u, v ∈ X, ∀λ, λ′ ∈ V(λ̄);

(h1) C is uniformly strongly monotone, i.e., for some m > 0,

〈C(u, µ)− C(v, µ), u − v〉 ≥ m|u − v|2, ∀u, v ∈ X, ∀µ ∈ V(µ̄);
(h2) for some b0 > 0, for all µ ∈ V(µ̄) and all u ∈ X one has |C(u, µ)| ≤ b0;
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(h3) for some γ ∈]0, 1[ and c > 0, µ �→ C(·, µ) is uniformly (in u)(γ, c)-Hölder, i.e., for
all u ∈ X and all µ,µ′ ∈ V(µ̄),

|C(u, µ)− C(u, µ′)| ≤ c‖µ− µ′‖γ .
3.1 Analysis of constraints

Before going on the analysis of parametric solutions to our problem (QVI), a crucial point is
to determine how the constraints behave whenever the parameter acting on d and the point u
are moving. In Proposition 1, we show that, for a Hölder continuous map d , we can dispose of
a Hölder-type behavior of the map (u, d) �→ Kd(u), which is a more strengthened property
than the well-known Aubin Lipschitz property (see Aubin [3]). First, we will use the result
in [20], which can be seen as a particular case of famous Hoffman’s Lemma, to derive the
following

Lemma 1 Let A be an l × m− matrix, κ1 and κ2 be given vectors in R
l . The solution set of

the linear equality Ax = κi , for i = 1, 2, is denoted by Si . Then, there exists ϑ = ϑ(A) > 0
such that for each x1 ∈ S1 there exists x2 ∈ S2 satisfying |x1 − x2| ≤ ϑ |κ1 − κ2|.
Proposition 1 Assume that (h0) holds. Then, there exist k1, k2 > 0 such that ∀λ, λ′ ∈ V(λ̄),
and ∀u, v ∈ E one has:

Kλ(u) ⊂ Kλ′(v)+ (k1‖λ− λ′‖ξ ′ + k2|u − v|ξ )B̄m, (2)

where B̄m denotes the unit closed ball in R
m.

Proof Let λ, λ′ ∈ V(λ̄) and u, v ∈ E . Consider the systems: Az = dλ(u); Az = dλ′(u).
From Lemma 1, there exists ϑ = ϑ(A) such that each z ∈ Kλ(u), we can find z′ ∈ Kλ′(v)
satisfying |z − z′| ≤ θ |dλ(u)− dλ′(v)|. We now involve (h0) and see that (2) is verified with
ki = θLi for i = 1, 2, completing the proof. ��
Remark 2 In the proof of our main result, we need only the following weak requirement on
the constraints which can be deduce from (2):

Kλ(u) ∩ X ⊂ Kλ′(v)+ (k1‖λ− λ′‖ξ ′ + k2|u − v|ξ )B̄m, ∀u, v ∈ X. (3)

Lemma 2 Assume that (h0) hold. Then, for all u, v ∈ X, for λ ∈ V(λ̄) and for all θ ∈
Kλ(u) ∩ X, there exists π ∈ Kλ(v) such that:

(i) |θ − π | ≤ k2|u − v|ξ ;
(ii) either π = θ or |π − θ | ≥ δ0

2 .

δ0 > 0 being the bound of flow minimal norm computed in Remark 1.

Proof The proof can be straightforwardly derived from Proposition 1 and is left to the reader.
��

Remark 3 Observe that, for any β ≥ 2, Remark 1 and assumption (h2) imply that
∣
∣
∣〈C(u, µ), v〉

∣
∣
∣ ≤ b|v|β, ∀u, v ∈ X : |v| ≥ δ0

2
, ∀µ ∈ V(µ̄). (4)

Here, b = ( 2
δ0
)β−1b0. Notice that (4) is trivially verified with β ≥ 1.
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4 Main result

Now, we are able to state and prove our main result.

Theorem 2 Assume that ū = u(µ̄, λ̄) is a solution to (QV I ) = (QV Iµ̄,λ̄), conditions

(h0)–(h4) hold and m > 2bkβ2 , where b = ( 2
δ0
)β−1b0 and β = 2

ξ
. Then, the solution

u(µ, λ) to (QVIµ,λ) is unique in X and verifies the following condition: there exist c1, c2 >

0, d1, d2 ∈]0, 1[ such that

|u(µ, λ)− u(µ′, λ′)| ≤ c1‖µ− µ′‖d1 + c2‖λ− λ′‖d2 (5)

for all µ,µ′ ∈ V(µ̄), λ, λ′ ∈ V(λ̄).

Proof The proof is organized in three steps. Let us fix λ ∈ V(λ̄). For the two solutions
u(µ, λ) and u(µ′, λ), we provide an estimation of |u(µ, λ)− u(µ′, λ)| for µ and µ′ around
µ̄. Since u(µ, λ) is a solution to QVIµ,λ, for all v ∈ Kλ(u(µ, λ)) we have:

〈C(u(µ, λ), µ), v − u(µ, λ)〉 ≥ 0. (6)

In a similar way we have for all v ∈ Kλ(u(µ′, λ)),

〈C(u(µ′, λ), µ′), v − u(µ′, λ)〉 ≥ 0. (7)

Using Lemma 2, either u(µ′, λ) ∈ Kλ(u(µ, λ)) or there exist w ∈ Kλ(u(µ, λ)) such that

|u(µ′, λ)− w| ≤ k2|u(µ, λ)− u(µ′, λ)|ξ and |u(µ′, λ)− w| ≥ δ0

2
. (8)

By the same argument, either u(µ, λ) ∈ Kλ(u(µ′, λ)) or there exists z ∈ Kλ(u(µ′, λ))
such that

|u(µ, λ)− z| ≤ k2|u(µ, λ)− u(µ′, λ)|ξ and |u(µ, λ)− z| ≥ δ0

2
. (9)

Let us introduce w̄ defined by

w̄ = u(µ′, λ), if u(µ′, λ) ∈ Kλ(u(µ, λ)),
w, if u(µ′, λ) /∈ Kλ(u(µ, λ))

(10)

and z̄ defined by

z̄ = u(µ, λ), if u(µ, λ) ∈ Kλ(u(µ′, λ)),
z, if u(µ, λ) /∈ Kλ(u(µ′, λ)). (11)

Now, by choosing v = w̄ in (6) and v = z̄ in (7) we obtain

〈C(u(µ, λ), µ), w̄ − u(µ, λ)〉 ≥ 0, (12)

〈C(u(µ′, λ), µ′), z̄ − u(µ′, λ)〉 ≥ 0. (13)

By strong monotonicity of C(·, µ′) we write

m|u(µ, λ)− u(µ′, λ)|2 ≤ −〈C(u(µ, λ), µ′), u(µ′, λ)− u(µ, λ)〉
−〈C(u(µ′, λ), µ′), u(µ, λ)− u(µ′, λ)〉.
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Combining (12) and (13), and the last inequality we have

m|u(µ, λ)− u(µ′, λ)|2 ≤ 〈C(u(µ′, λ), µ′), z̄ − u(µ′, λ)〉
−〈C(u(µ′, λ), µ′), u(µ, λ)− u(µ′, λ)〉
+ 〈C(u(µ, λ), µ), w̄ − u(µ, λ)〉
− 〈C(u(µ, λ), µ), u(µ′, λ)− u(µ, λ)〉
+ 〈C(u(µ, λ), µ), u(µ′, λ)− u(µ, λ)〉
− 〈C(u(µ, λ), µ′), u(µ′, λ)− u(µ, λ)〉.

It follows that

m|u(µ, λ)− u(µ′, λ)|2 ≤ 〈C(u(µ′, λ), µ′), z̄ − u(µ, λ)〉
+〈C(u(µ, λ), µ), w̄ − u(µ′, λ)〉
+〈C(u(µ, λ), µ)− C(u(µ, λ), µ′), u(µ′, λ)− u(µ, λ)〉.

We observe that if u(µ, λ) ∈ Kλ(u(µ′, λ)) then

〈C(u(µ, λ), µ), z̄ − u(µ, λ)〉 = 0, (14)

whereas if u(µ, λ) /∈ Kλ(u(µ′, λ)),

〈C(u(µ, λ), µ), z̄ − u(µ, λ)〉 = 〈C(u(µ, λ), µ), z − u(µ, λ)〉. (15)

Analogously, if u(µ′, λ) ∈ Kλ(u(µ, λ)) then

〈C(u(µ, λ), µ), w̄ − u(µ′, λ)〉 = 0 (16)

and if u(µ′, λ) /∈ Kλ(u(µ, λ)), we have

〈C(u(µ, λ), µ), w̄ − u(µ′, λ)〉 = 〈C(u(µ, λ), µ),w − u(µ′, λ)〉. (17)

Without loss of generality, we can suppose that w and z exist. Therefore, thanks to (h2),
(8), (9), and Remark 3 we get

m|u(µ, λ)− u(µ′, λ)|2 ≤ b|w − u(µ′, λ)|β + |C(u(µ′, λ), µ′)
−C(u(µ′, λ), µ)||u(µ, λ)− u(µ′, λ)|
+b|z − u(µ, λ)|β . (18)

From assumption (h3) it results

m|u(µ, λ)− u(µ′, λ)|2 ≤ 2kβ2 b|u(µ, λ)− u(µ′, λ)|ξβ
+c‖µ− µ′‖γ |u(µ, λ)− u(µ′, λ)|.

Accordingly (h4), leads to

m|u(µ, λ)− u(µ′, λ)|2 ≤ 2kβ2 b|u(µ, λ)− u(µ′, λ)|2
+c‖µ− µ′‖γ |u(µ, λ)− u(µ′, λ)|.

Equivalently,

(m − 2kβ2 b)|u(µ, λ)− u(µ′, λ)|2 ≤ c‖µ− µ′‖γ |u(µ, λ)− u(µ′, λ)|.
Consequently,

(m − 2kβ2 b)|u(µ, λ)− u(µ′, λ)| ≤ c‖µ− µ′‖γ .
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Let us set c1 = [c/(m − 2kβ2 b)] and d1 := γ. Thanks to (h4) we have that d1 < 1.
Therefore,

|u(µ, λ)− u(µ′, λ)| ≤ c1‖µ− µ′‖d1 . (19)

Now, for each µ around µ̄, we prove that λ �→ u(µ, λ) is Hölder continuous around λ̄.
Thus, let λ, λ′ ∈ V(λ̄). Of course (2), ensures that

∃u1 ∈ Kλ(u(µ, λ)) such that |u1 − u(µ, λ′)| ≤ k1‖λ− λ′‖ξ ′
, (20)

∃u2 ∈ Kλ′(u(µ, λ)) such that |u2 − u(µ, λ)| ≤ k1‖λ− λ′‖ξ ′
. (21)

Thanks to Lemma 2, either u1 ∈ Kλ(u(µ, λ)) or there exists u′
1 ∈ Kλ(u(µ, λ)) such that

|u1 − u′
1| ≤ k2|u(µ, λ)− u(µ, λ′)|ξ and |u1 − u′

1| ≥ δ0

2
. (22)

A similar argument allows to say that either u2 ∈ Kλ′(u(µ, λ′)) or there exists u′
2 ∈

Kλ′(u(µ, λ′)) such that

|u2 − u′
2| ≤ k2|u(µ, λ)− u(µ, λ′)|ξ and |u2 − u′

2| ≥ δ0

2
. (23)

Let us define ū1 and ū2 as follows

ū1 = u1, if u1 ∈ Kλ(u(µ, λ)),
u′

1, if u1 /∈ Kλ(u(µ, λ)).
(24)

ū2 = u2, if u2 ∈ Kλ′(u(µ, λ′)),
u′

2, if u2 /∈ Kλ′(u(µ, λ′)). (25)

Since u(µ, λ) (respectively, u(µ, λ′)) is a solution to (QVIµ,λ) (respectively, (QVIµ,λ′)),
then we have

〈C(u(µ, λ), µ), ū1 − u(µ, λ)〉 ≥ 0, (26)

〈C(u(µ, λ′), µ), ū2 − u(µ, λ′)〉 ≥ 0. (27)

Again, thanks to strong monotonicity of C(·, µ) it results that

m|u(µ, λ)− u(µ, λ′)|2 ≤ −〈C(u(µ, λ), µ), u(µ, λ′)− u(µ, λ)〉 (28)

−〈C(u(µ, λ′), µ), u(µ, λ)− u(µ, λ′)〉.
Using (26)–(28) we get

m|u(µ, λ)− u(µ, λ′)|2 ≤ 〈C(u(µ, λ), µ), ū1 − u(µ, λ)〉
−〈C(u(µ, λ), µ), u(µ, λ′)− u(µ, λ)〉
+〈C(u(µ, λ′), µ), ū2 − u(µ, λ′)〉
−〈C(u(µ, λ′), µ), u(µ, λ)− u(µ, λ′)〉.

Accordingly,

m|u(µ, λ)− u(µ, λ′)|2 ≤ 〈C(u(µ, λ), µ), ū1 − u(µ, λ′)〉
+〈C(u(µ, λ′), µ), ū2 − u(µ, λ)〉.
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Hence,

m|u(µ, λ)− u(µ, λ′)|2
≤ 〈C(u(µ, λ), µ), ū1 − u1〉 + 〈C(u(µ, λ), µ), u1 − u(µ, λ′)〉 (29)

+〈C(u(µ, λ′), µ), ū2 − u2〉 + 〈C(u(µ, λ′), µ), u2 − u(µ, λ′)〉. (30)

From (h2), (20), and (21) it follows that

C(u(µ, λ), µ), u1 − u(µ, λ′)〉 ≤ b0|u1 − u(µ, λ′)| ≤ b0k1‖λ− λ′‖ξ ′
, (31)

〈C(u(µ, λ′), µ), u2 − u(µ, λ′)〉 ≤ b0|u2 − u(µ, λ)| ≤ b0k1‖λ− λ′‖ξ ′
. (32)

On the other hand, we observe that

〈C(u(µ, λ), µ), ū1 − u1〉 = 0, if u1 ∈ Kλ(u(µ, λ)),
〈C(u(µ, λ), µ), u′

1 − u1〉, if u1 /∈ Kλ(u(µ, λ)),

〈C(u(µ, λ′), µ), ū2 − u2〉 = 0, if u2 ∈ Kλ′(u(µ, λ′))
〈C(u(µ, λ), µ), u′

2 − u2〉, if u2 /∈ Kλ′(u(µ, λ′)).

Suppose, without loss of generality, that u′
1 and u′

2 exist. Then (22), (23), and Remark 3
ensure that

〈C(u(µ, νi ), µ), u′
i − ui 〉 ≤ b|u′

i − ui |β ≤ bkβ2 |u(µ, λ)− u(µ, λ′)|ξβ (33)

for all i ∈ {1, 2}, where ν1 = λ and ν2 = λ′. Using (29), (31) and (32), we conclude that

m|u(µ, λ)− u(µ, λ′)|2 ≤ 2b0k1‖λ− λ′‖ξ ′ + 2bkβ2 |u(µ, λ)− u(µ, λ′)|ξβ . (34)

Now, we involve (h4) and deduce that

(m − 2bkβ2 )|u(µ, λ)− u(µ, λ′)|2 ≤ 2b0k1‖λ− λ′‖ξ ′
.

Therefore,

|u(µ, λ)− u(µ, λ′)| ≤
(

2k1b0

m − 2bkβ2

)1/2

‖λ− λ′‖ξ ′/2. (35)

Set c2 = [ 2k1b0

m−2bkβ2
]1/2 and d2 = ξ ′/2.

Now, using (19) and (35) we get

|u(µ, λ)− u(µ′, λ′)| ≤ |u(µ, λ)− u(µ′, λ)| + |u(µ, λ)− u(µ′, λ′)|
≤ c1‖µ− µ′‖d1 + c2‖λ− λ′‖d2 .

Finally, choosing (µ, λ) = (µ′, λ′) in the above expression, the uniqueness of the perturbed
solution follows. We also remark that, due to condition (h1), for each solution u to (QVI),
perturbed problems (QVIµ,λ), and (QVIµ′,λ′) admit unique solutions in a neighborhood of
u. Thus, the proof is complete. ��
Remark 4 The above result remains true even in infinite dimensional Hilbert spaces.
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